Kantorovich-type convergence criterion for inexact Newton methods

نویسندگان

  • Weiping Shen
  • Chong Li
چکیده

Article history: Received 2 September 2008 Received in revised form 23 October 2008 Accepted 4 November 2008 Available online 13 November 2008 MSC: 65H10 65J15 47H30

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Semilocal Convergence of Inexact Newton Methods

Inexact Newton methods are constructed by combining Newton’s method with another iterative method that is used to solve the Newton equations inexactly. In this paper, we establish two semilocal convergence theorems for the inexact Newton methods. When these two theorems are specified to Newton’s method, we obtain a different Newton-Kantorovich theorem about Newton’s method. When the iterative m...

متن کامل

On Semilocal Convergence of Inexact Newton

Inexact Newton methods are constructed by combining Newton’s method with another iterative method that is used to solve the Newton equations inexactly. In this paper, we establish two semilocal convergence theorems for the inexact Newton methods. When these two theorems are specified to Newton’s method, we obtain a different Newton-Kantorovich theorem about Newton’s method. When the iterative m...

متن کامل

Semilocal and global convergence of the Newton-HSS method for systems of nonlinear equations

Newton-HSS methods, that are variants of inexact Newton methods different from Newton-Krylov methods, have been shown to be competitive methods for solving large sparse systems of nonlinear equations with positive definite Jacobian matrices [Bai and Guo, 2010]. In that paper, only local convergence was proved. In this paper, we prove a Kantorovich-type semilocal convergence. Then we introduce N...

متن کامل

Global convergence of an inexact interior-point method for convex quadratic‎ ‎symmetric cone programming‎

‎In this paper‎, ‎we propose a feasible interior-point method for‎ ‎convex quadratic programming over symmetric cones‎. ‎The proposed algorithm relaxes the‎ ‎accuracy requirements in the solution of the Newton equation system‎, ‎by using an inexact Newton direction‎. ‎Furthermore‎, ‎we obtain an‎ ‎acceptable level of error in the inexact algorithm on convex‎ ‎quadratic symmetric cone programmin...

متن کامل

Kantorovich’s type theorems for systems of equations with constant rank derivatives

The famous Newton–Kantorovich hypothesis has been used for a long time as a sufficient condition for the convergence of Newton’s method to a solution of an equation. Here we present a “Kantorovich type” convergence analysis for the Gauss–Newton’s method which improves the result in [W.M. Häußler, A Kantorovich-type convergence analysis for the Gauss–Newton-method, Numer. Math. 48 (1986) 119–125...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008